Page 15 -
P. 15
1.3.1 ా҅җ ݠन ۞
ా҅ ࢎח ӝਗ 5ࣁӝ ୡө Ѣठ۞ ৢۄо݅ 19ࣁӝ ݈ _ 20ࣁӝ ୡী Ѧ ١ೠ
ా҅ ࣁ ݺ ےदझ Ҏఢ ண ೖযट ۽օ٘ ೖ࣊ ী ೧ ખ؊ ҅ੋ ޙਵ۽ ܻغ
ٜ օܻ ঌ۰ ా҅ ӝߨੋ ഥӈ ࠙ࢳ(regression) ب(likelihood) ࠙ ࠙ࢳ(analysis of
variance) ࢚ҙ ࠙ࢳ(correlation) ١ਸ Ҋউ೮
20ࣁӝ ߈ী ܰ۞ ా҅ ؘఠ ࠙ࢳҗ ӟೞѱ ӝ द೮ 1962֙ী ߊػ ਬݺ
1
ೠ ֤ޙ ؘఠ ࠙ࢳ ې(The Future of Data Analysis) ীࢲ ઓ ఠః Ҵ ࣻ ా
҅ݴ Ҋࣘ ಹܻী ߸ജ ߅झ ର HSD Ѩ ߊݺ۽ ੜ ঌ۰ઉ ח tѾҴ ա
о ҙब ؘఠ ࠙ࢳী uҊ ә೮ਵݴ ח ਊ ా҅ ਃೠ ۽ ߉ইٜ
ৈ
Ӓ റ۽ ࣻभ ֙р ాٜ҅ ਊ ҅ ా҅ ࠙ঠী ݆ ҙबਸ ࠁݴ ҙ۲ োҳܳ ࣘ
೮ ೞ݅ Ӓ द ాٜ҅ ֢۱ ஹೊఠ җ ࠙ঠ ݠन ۞ োҳ৬ ࢚ زڄয
ઉ
1950֙ റ߈ ஹೊఠ ߊ ਬইӝী যٜݶࢲ ஹೊఠ җٜ ࢎۈ न҃ ׳ ݽ؛
ীࢲ উೠ ੋҕמ दझమ ੋҕ न҃ݎ(neural networks)ਸ োҳೞӝ द೮ ۘ ۽ઃ࠶
ۖ ࢶҳੋ ಌࣆۿ(perceptron) ঌҊ્ܻҗ Ӓ ٍܳ ਤ٘۽৬ ഐ োҳח ࢜۽ ࠙ঠ
ী ೠ োҳٜ ߊੋ ҙबਸ ࠛ۞ੌਵௌ 2
ੋҕ न҃ݎ ୡӝ ࢿҕী ٍয ࣻभ ֙р ؘఠ۽ࠗఠ ಁఢਸ زਵ۽ णೞח নೠ
ݠन ۞ ӝߨ ୭Ӕ ਓ(nearest neighbor) ࢎ Ѿ ܻ(decision tree) k-ಣӐ ҵച(k-means
clustering) ࢲನ ߭ఠ ݠन(Support Vector Machine, SVM) ١ Ҋউغ
ஹೊఠ दझమ ؊ ࡈۄҊ ࠺ਊ ۴೧ݶࢲ ؊ ݆ ؘఠࣇਸ ݠन ۞ ӝߨী ഝਊೡ
ࣻ ѱ غ ۞ೠ ߊ ؊ ѼҊೠ ݠन ۞ ঌҊ્ܻ ҳഅਵ۽ য
1989֙ GTE োҳࣗ ؘఠ җ؍ ӒۨҊܻ ೖইపझః-ࢥೖ۽ח KDD(Knowledge
Discovery in Database) ਕࣸਸ ѐ୭೮ KDD ਕࣸ Әࣁ ਬݺ೧ઉ ݒ֙ KDD Cup ؘఠ
݃ ഥܳ ҙೞח ACM-SIGKDD ഥ۽ ߊ೮
1 IUUQ XXX TUBOGPSE FEV _HBWJTI EPDVNFOUT 5VLFZ@UIF@GVUVSF@PG@EBUB@BOBMZTJT QEG
2 झగನ٘ Үࣻ؍ ߡա٘ ਤ٘۽৬ Ӓ ઁ ప٘ ഐח "%"-*/&ۄח न҃ݎ ݽ؛ਸ ઁউ೮
026
하둡과 스파크를 활용한 실용 데이터과학(본문)5차.indd 26 2017-07-25 오후 4:15:43